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On the Characterization of Strain-Hardening

in Plasticity

by

J. Casey and P. M. Naghdi

Department of Mechanical Engineering

University of California, Berkeley, Calif. 94720

Abstract. In the context of a purely mechanical, rate-type theory of elastic-
plastic materials and utilizing a strain space formulation introduced in [l],

this paper is concerned mainly with developments pertaining to strain-hardening

behavior consisting of three distinct types of material response, namely

hardening, softening and perfectly plastic behavior. It is shown that such

strain-hardening behavior may be characterized by a rate-independent quotient
of quantities occurring in the loading criteria of strain space and the cor-

responding loading conditions of stress space. With the use of special con-

stitutive equations, the predictive capability of the results obtained are

illustrated for strain-hardening response and saturation hardening in a

uniaxial tension test.
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1. Introduction

Within the scope of a rate-type mechanical theory of elastic-plastic

materials, Naghdi and Trapp [1] have recently discussed the advantages of

formulating plasticity theory relative to yield (or loading) surfaces in

strain space (rather than stress space). We adopt here the loading criteria

of the strain space formulation as primary and derive the associated loading

conditions in stress space. By comparing the local motion of the loading

surface in stress space to that of the loading surface in strain space during

loading, we find that three distinct types of material response representing

hardening, softening and perfectly plastic behavior can be defined in a natural

way. For convenience, these three types of response will be referred to

collectively as strain-hardening behavior. The development leading to the

latter, as well as illustrative examples of the results for special constitu-

tive equations, are the main objectives of the present paper. As in [1], we

confine attention to the purely mechanical theory of elastic-plastic materials,

and base our development on the rate-type stress space formulation of Green

and Naghdi [2,31 tand on the alternative strain space formulation introduced

by Naghdi arnd Trapp [1].
By way of motivation, consider the response of a typical ductile metal in

a one-dimensional simple tension test in which the strain may be moderately

large. Let e and s stand, respectively, for the component e U of the Lagrangian

strain tensor and the component s 11 the syimetric Piola-Kirchhoff stress tensor.

Figure 1 shows a plot of the stress s versus the strain e for the one-dimensional

homogeneous simple tension test. From the origin 0 to the elastic limit

1The theory proposed in (2,3] in a general thermodynamical theory of elastic-
plastic materials.* The development in [1] is carried out within a purely
mechanical framework which can readily be interpreted in terus of the
isothermal case of the thermodynamical theory.



(identified by the point 1) the material is elastic, stress strictly increases*

with strain, there is no plastic straining and unloading takes place along 1-0. On

the rising portion 1-3 (excluding point 3) of the s-e curve both stress and plastic

strain strictly increase with strain. Unloading from a point such as 2 takes

place along 2-2' leaving a plastic strain of amount 02'. At point 3, s attains

its maximum value On the falling portion 3-4-5 (excluding point 3) of the

s-e curve, stress strictly decreases with strain, but plastic strain continues

to strictly increase. Associated with each point of the segment 1-5 in Fig. 1,

there is a unique yield point on the s-axis (i.e., in stress space) and a unique

yield point on the e-axis (i.e., in strain space). For the points 1,2,3,4,5

these are denoted by A1 ,A2,A3,A4,A5 and BI,B2 ,B3,B4,Bs, respectively. The

points A1 and B1 are the initial yield points. As the segment 1-5 of the

stress-strain curve is traversed, the locus of the yield point on the s-axis

differs characteristically from that of the yield point on the e-axis, in that

the former reverses its direction of motion while the latter does not.

The usual loading criteria of the stress space formulation of plasticity

theory, when applied to the one-dimensional case under discussion, require that

the plastic strain rate be nonzero whenever the yield point on the s-axis is

moving upwards, and be zero when it is stationary. It is further stipulated

that the yield point on the s-axis cannot move downwards while tension is

being applied. These criteria are consistent with the results of the tensile

test for the rising portion 1-3 of the stress-strain curve, both for paths .1

Recall that a real-valued function f defined on some interval 9 of the real
line is increasing if f(x?)g f(xl) whenever x, and x2 belong to S and x2 tx I.
A function f is strictly increasing if f(x2 )>f(x1 ) whenever x2 >xI.
Similarly, f is decreasing if x2 _xl implies f(x21 If(xl) and strictly
decreasing if x2 >x 1 implies f(x2 ) <f(xl).

OAs was observed by Naghdi and Trapp [1, p. 789], the maximum of the s-e curve
corresponds to a point which is still in the rising portion of the engineering
stress (TT) versus engineering strain (€) curve. The maximum of the T-€ curve,
where necking begins, corresponds to a point on the falling portion of the s-e
curve.

2.



the type 1-2 and paths of the type 2-2'. They also demand the correct kind of

behavior for paths of the type 4-4' issuing from pointa on the falling portion

3-5 of the stress-strain curve. However, they are clearly inadequate for paths

of the type 3-4 because the yield point on the s-axis does move downwards for

any such path; and, as was pointed out in [1], plastic strain is observed to be

strictly increasing in this region. On the other hand, again with reference to

the one-dimensional case under discussion, the loading criteria of the strain

space formulation require that the plastic strain rate be nonzero whenever the

yield point on the e-axis is moving outwards and that it be zero whenever this

yield point is stationary. It is further required that the yield point on the

e-axis cannot move inwards while extension is occurring. These requirements are

consistent with the behavior represented in Fig. 1. Thus, the plastic strain

is strictly increasing along the paths 1-2 and 3-4 and is constant along the

paths 2-2' and 4-4'.

In order to provide a background for some subsequent developments, it is

desirable to make further observations regarding the stress-strain curve in

Fig. 1. In the context of the classical infin~itesimal theory, we recall the

relations

e = e +e ,e = s/E ,()
e p e

where e and e are abbreviations for the components e e and e11 of the elastic

and plastic strains, respectively, and E (>0) is Young's modulus. We note

that

e de +d de jede e)-l 1 .R(2)
Ts ds Te- =d ds ds dee e

de
Now with the use of e P~O and (2) we have

ds E)2'

3.



de de de de~>O0ifand only if1- >0 < 0<if and only if~j< 0 (3)de dde

On the rising portion of the s-c curve fte>0 (or equivalently 41>0)0 on the
ds de

falling portion ke<0 (-1<0) and !L at point 3 becomes unbounded. Then, at ads de

point A on the s-c curve, with the help of (2) and (3) it is readily seen that

de F> 0 if and only, if A is on the rising portion of the curve,

dee 0 if and only if A is on the falling portion of the curve,

while 1 + de p/de e becomes unbounded at point 3.

After recalling the main features of the purely mechanical theory of
*~ A

elastic-plastic materials from [1,2,3] in Section 2, a quotient f/g of

quantities which are derived from the loading functions f in stress space, and

A
g in strain space, is introduced. It is noteworthy that while f involves the

A
time rate of the stress tensor and g the time rate of the strain tensor, the

A A
quotient f;/g is independent of rates. In the latter part of Section 2, using

an equation obtained with the help of a physically plausible work assumption

introduced by Naghdi and Trapp in [4], we derive a geometrically revealing

A A
expression for the quotient f /g [see Eq. (32)]. Next (Section 3), in terms of

A A
the quotient f/g, definitions are provided (see (143)) for strain-hardening

behavior, i.e., for hardening, softening and perfectly plastic behavior, and

their geometrical implications are examined. It is demonstrated that, while

during loading the yield surface in strain space is always moving outwards

locally, the corresponding yield surface in stress space may concurrently be

moving outwards, inwards or may be stationary depending on whether the material

is hardening, softening, or exhibiting perfectly plastic behavior. Because of

While some of the formulas in Section 2 may appear to be repetitions of those
in [1], our starting point and some of our conclusions differ from [1] and for
clarity we have repeated these formulas.

4.
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our definitions (4~3), a variety of functions associated with material behavior and

deriving from f/g or f are found to be positive, negative or zero according as a

material exhibits hardening, softening or perfectly plastic behavior. To avoid

undue repetition, we introduce the abbreviation (144) and denote such conditions

by the letter H. Any function that satisfies conditions H can be used to charac-

terize strain-hardening behavior. By considering the limiting behavior of f/g,I

we also examine (in the context of the developments of the present paper) the

phenomenon of saturation hardening studied previously by Caulk and Naghdi [51.

Definitions for saturation behavior are given at the end of Section 3.

The results in Sections 2 and 3 hold in the context of the nonlinear theory,

but in the remainder of the paper attention is confined to small deformations

of elastic-plastic materials. In order to demonstrate the predictive capability

of the strain-hardening characterization developed in Section 3, special sets

of constitutive equations are utilized in Sections 14 and 5 to discuss, respec-

tively, strain-hardening response and saturation hardening under uniaxial

loading.

For the particular constitutive equations utilized in Section 4, a rate-

independent characterization of strain-hardening behavior is provided in terms

of a certain combination (20+*0) of material constants. Moreover, it is shown

that both the time rate of work-hardening (K) and the time rate of tension()
A A

may be used to characterize strain-hardening behavior. While the quotient f/g

involves the coefficient * as well as the derivatives of strains with respect

to stress (see Eq. (64)), it is shown that for a certain special case, the

AA
quotient f/g may be expressed (see Eq. (65a)) in terms of quantities appearing

in (2), (3) and (14) recorded earlier in this section. An examination of details

of the solution in Section 14 shows that in uniaxial tension and in the sense of

our definitions, linear elastic behavior is followed for perfectly plastic

behavior by a horizontal stress-strain curve, while hardening behavior is

mai.



represented by a straight line lying above, and softening by a straight line

lying below the perfectly plastic line.

Finally in Section 5 we consider another set of constitutive equations

having in particular a loading function employed by Caulk and Naghdi (5] in

their discussion of hardening response in small deformation of metals. Again

it is shown that a number of different functions can be used to characterize

strain-hardening behavior. Moreover, it is demonstrated that the quotient
A A
f/g may be calculated in uniaxial tension from a knowledge of the slope de/ds,

found from the stress-strain curve, and the elastic constants, namely Young's

modulus E and the shear modulus p, and thus may be easily identified experi-

mentally. Although our characterization of strain-hardening is, in general,

different from that discussed previously by Caulk and Naghdi (5], the two sets

of results are in agreement for the class of materials for which detailed

comparisons with experiments were undertaken in [5]. In this connection see

Eqs. (88), which also include a simple expression in terms of material coef-

ficients for the saturation hardening constant.



A A
2. The Quotient f/g of Quantities Occurring in Loading Criteria.

Let the motion of a body be referred to a fixed system of rectangular

Cartesian axes and let the position of a typical particle in the present con-

figuration at time t be designated by xi=Xi(XA,t), where XA is a reference

position of the particle. Throughout the paper, lower case Latin indices are

associated with the spatial coordinates xi and assume the values 1,2,3.

Similarly, upper case Latin indices are associated with the material coordinates

XA and take the values 1,2,3. We also adopt the usual convention of summation

over repeated indices.

We define a symmetric Lagrangian strain tensor by eK = (FiKiL-8K), where

F iK = xi/aXA is the deformation gradient relative to reference position and

is the Kronecker symbol. The six-dimensional Euclidean vector space formed

from the components eKL is called strain space. The components of the symmetric

Piola-Kirchhoff stress tensor are denoted by sMN and the six-dimensional Euclidean

space formed from these components is called stress space.

We now summarize the main ingredients of the purely mechanical rate-type

theory of a finitely deforming elastic-plastic solid and base our treatment on

the work of Green and Naghdi [2,31 and Naghdi and Trapp [1]. In addition to the

strain tensor eKL, we assume the existence of a symmetrict second order tensor-

valued function eP =eP(Xt) called the plastic strain at X and t, and a
KI KL A A

scalar-valued function K =K(XA,t) called a measure of work-hardening. It is

assumed that the stress sMN is given by the constitutive equation

(e e) ,K] (5)

MN =MN VK

and that for fixed values of ep and K, (5)ipossesses an inverse of the form

A

e = eM ) , = SK,ej)K, . (6)

tIn [41, Neghdi and Trapp have shown that the symmetry of eP follows from a

*, physically plausible work assumption which will be discussed at the end of
this section.

7.
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A A

The response functions s and e., in (5) and (6) are taken to be smooth.

We admit the existence of a continuously differentiable scalar-valued

yield (or loading) function g(t) such that, for fixed values of e and

the equation

g(U) = 0 (7)

represents a closed orientable hypersurface 2 of dimension five

enclosing a region e of strain space. The work-hardening parameter K

is chosen so that g(t)<0 for all points in the interior of the region P. The

hypersurface 2 is called the yield (or loading) surface in strain space.

Corresponding to a motion Xi, we may associate with each particle of the

body a continuous oriented curve C in strain space. This curve will bee

called a strain trajectory. The strain trajectories are restricted to lie

initially in P or on its surface a, i.e.,

g(U) g 0 (8)

initially on C •e

The constitutive equations for c and e are [i]

K KL , (9)

and

0 if g<O , (a)

A
0 if g = 0 and g < , (b)

e KL A A (10)
0 if g = 0 and g = 0 , (c)

A A
%Pg if g = 0 and g > 0 , (d)

where cK=&() is a symnetric tensor-valued function, a superposed dot

indicates material time differentiation,

8.



A s()

and where X= () and PK=,(A) aret, respectively, a scalar-valued function
A

and a symmetric tensor-valued function. The quantity g is the inner product

of the tangent vector eM to a strain trajectory C and the vector . When

A eeMN
g =0 and Bg/BeMN O, g gives the inner product of eMN and the outward

normal vector to the yield surface a, where the notation Dg/De M stands for

A
the symmetric form (ag/aeMN +ag/BeNM). The conditions involving g and g in

(10) are the loading criteria of the strain space formulation. Using conven-

tional terminology, these four conditions in the order listed correspond to

(a) an elastic state (or point in strain space); (b) unloading from an elastic-

plastic state, i.e., a point in strain space for which g=0; (c) neutral

loading from an elastic-plastic state; and (d) loading from an elastic-plastic

A
state. We assume that the coefficient of g in (lOd) is nonzero on the yield

surface and, without loss in generality, we then set

pKL 0 , x,>0 . (12)

In order to provide a geometrical interpretation of the conditions (10),

we need to record the material time derivative of the loading function, namely

A ( 13

pKL ~

where (11) has been used. It follows from (7), (9) and (lOa) that in an

elastic state the strain trajectory Ce lies in the interior of e .'hich is

referred to as the elastic region in strain space, and the yield surface a

remains stationary. Similarly, by (7), (9), (lOb) and (13), during unloading

the strain trajectory C intersects the yield surface 2 and is moving ine

an inwardly direction, with the function g decreasing, while 2C itself

'Our notation X corresponds to X in 1].

9.
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remains stationary. Likewise, from (7), (9), (10c) and (13) during neutral

loading the strain trajectory C lies in the yield surface b while the lattere

remains stationary and g=0. Finally, from (7), (9), (lOd) and (13) during

loading the strain trajectory Ce intersects B and is moving in an outwardly

direction. It is stipulated in this case that F is locally pushed outwards

by the strain trajectory C so that t

e

g=0 , (14)

A
if g=0, g>0. Thus, positive values of the function g can never be reached

on a strain trajectory and the condition (8) holds for all time. It follows

from (9), (lOd), (13) and (14) that during loading

g('+ +N ce = o . (15)
KL

A
Therefore, since the coefficient of g is independent of e, we have

lXP 0 (16)

KL

at all pointson the yield surface Be through which loading can occur. We note

that equations (5)1 and (6)1 hold during loading, neutral loading, unloading

and in an elastic state.

For a given motion Xi and an associated strain trajectory Ce we may utilize

the constitutive equations (5)1, (9) and (10), together with appropriate initial

conditions for ep and K, to obtain the corresponding stress trajectory C , aKL s

continuous oriented curve in stress space. In a similar fashion (6)1 may be used

to obtain Ce from C . Furthermore, for a given loading function g(i&), with the

aid of (6)1, we can obtain a corresponding function f(1.) through the formula

tIn the literature on plasticity this is called the "consistency" condition,

namely that loading from an elastic-plastic state leads to another elastic-
plastic state. For references and background information in the context of a
stress space formulation, see for example Naghdi [6, pages 141, 137].

10.
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g(e) = g(e1jxe) , K) f(IS) , (17)

where the variables U and 11 are defined by (5)2 and (6)2, respectively.

Conversely, (5)1 may be used to obtain g from f. Because of the assumed

smoothness of (6)1, for fixed values of ep and K, the equation

f(U) =0 (18)

represents a hypersurface a, in stress space having the same geometrical

properties as the hypersurface Z in strain space. The region enclosed by g

is denoted 9. It follows from (17) that a point in strain space belongs to the

elastic region e (i.e., g(UA)<0) if and only if the corresponding point in stress

space satisfies f(lj)<0 and hence belongs to 9. Similarly, by (17) and (18) a

point in strain space belongs to the yield surface 2 (i.e., g= 0) if and only

if the corresponding point in stress space belongs to 29 (i.e., f=0). Hence, we

refer to the interior of % as the elastic region in stress space, and to 39 as the

yield (or loading) surface in stress space. We have seen that (8) holds for

all t. Therefore, by (17), every stress trajectory C is restricted

to lie in & or on its surface ag and positive values of f can never be reached.

We note that any function of variables U can be written as a different

function of variables Ij and vice versa, e.g., CU= EKL(U)=CKL( which

occurs in (9).

In [1] a comparative basis was provided between the two independent sets of

loading criteria for the stress space and the strain space formulations. A

correspondence between the two sets of loading criteria was established for all

conditions except that during loading. The approach in the present paper

differs from that of [1] in that the loading criteria of the strain space

formulation are regarded as primary and associated loading conditions in

11.
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*i

stress space are deduced from the former . Although in the examination of

the loading criteria our starting point and conclusions are different, the

arguments employed parallel those of [1]. Thus, taking the material time

derivative of (17) and making use of (13) we obtain

f = SMN MN "(20)

A
The quantity f is, of course, the inner product of the tangent vector S to a

stress trajectory CP and the vector / In view of (19)

A Af=g if = 0and =0 . (21)

Considering an elastic state, f= g<0, (l0a) holds, = 0 by (9) and hence

A A
f =g by (21). Since the yield surface in strain space is stationary so also

is the yield surface th in stress space. The stress trajectories remain in the

* Ainterior of $. It is clear from (9), (l0b), (17) and (21) that f=0 and f<O if

A A

g=0 and g<0. In this case (g=0, g<0) the stress trajectory Cs intersects

63 and is directed inwards, with the function f decreasing in value, while ag

@These derived conditions are not the same as the loading criteria usually
assumed in the stress space formulation.

In [1] it was possible to prove the converse of this statement because of the
independent loading criteria that were assumed in the stress-space formulation.
It will become clear presently that in the context of this paper the converse
statement does not hold.

12.



itself remains stationary. It follows from (9), (lOc), (17) and (21) that" f=O

and f=O if g=O and '=O. In this case (g=O, g=0) the stress trajectory

Cs lies in the surface b3 which remains stationary and f = 0.

In the case of loading from an elastic-plastic state, it follows from

(9), (10d) and (19)that

Af A

A- KL ' (g=O, g>0) . (22)

AA
In the developments that follow, the quotient f/g can be expressed in a

number of different forms. In order to establish one such form we note that

by (17), (5)1, (6)1 and the chain rule of differentiation

A A

_ ..f af asM e eMN 

bep  aep aSMN bep beMN bei (
A (23)

&L MN 9e MN
_. a __ _._ _ag aA

BK BIC as M ;)K be MN aIC

With the use of (23), (22) can be rewritten as
A A

1+XPKL  - cUKL]

9 MN be --

A A

__ , + e(2ea)
% kKL aeMN e K e- '>02

A A
Another useful form of the quotient f/g that may be derived from (22) with the

help of (12)2 and (16) is _f

A P A (24bAP- , (g=O, g>O) • (24b)
g be KL PMN" (P% K

eMN

Since the right-hand side of (24b)2 is independent of rates, it is clear that

AAthe quotient f/g is independent of rates and has the same value for all strain

trajectories through a given elastic-plastic point on a. Also, in view of (17),
AA
f/g is dimensionless. Clearly a knowledge of all constitutive equations is required

See the previous footnote.

13.
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AA

for the calculation of f/g.

We now turn to the work assumption of Naghdi and Trapp [4,7]. Starting

with the assumption that the external work done on an elastic-plastic body in

any smooth spatially homogeneous closed strain trajectory is nonnegative, it

was demonstratedt in [4] that
A A

!!5 sM JP 0 (25)

A
during loading or neutral loading, i.e., when g=0, gN 0. In the case of

neutral loading it follows from (lOc) that the left-hand side of (25) vanishes

and (25) is satisfied trivially, while in the case of loading, it follows from

(lad) and (12)2 that (25) becomes

A As. SMN N
ft-+- -- c ] o (26)

A
with g= 0 and g>0. The coefficient of e in (26) is itself independent of

A
eMN and the inequality must hold for all choices of eMN that satisfy g >0.

Therefore, by the same argument used in Section 5 of [4], we deduce that

A A[ +SMN + N(27)

aep-- bK. CM)jPKL -Y* -a- (27

evaluated on the yield surface g= O, where the scalar function y satisfies

Y =Y (U) - . (28)

We emphasize that (27) holds even for a motion that is not homogeneous* .

In order to compare (27) with the results of [4] we multiply on both sides

A
of (27) by Xg and utilize (lad) to obtain

A A
!!M L ~M C ; _*A J A
{aep + K cKc 1; --- a* N (g--o, 9 >0) (29)
peKLL  eecv l '

tSee equations (5.2), (5.3) and (4.11) of [4]; the notation H4N in [4] cor-

responds to C in the present paper.

SFor a discussion of this point, see [4, p. 40] or [7, p. 63].

14.



Recalling the restrictions (12 and (28), we define a function y by

= Xgit0(30)

A.

- yg i 0 (0

and troin (29) obtain

A
___- Y ()

KL
Equation (31) is the same as (5.4) of [4]. We note that (31) involves rates,

while (27) does not. We have shown that (27) implies (31). Conversely, it

* / Afollows at once from (10d) and (12 that (31) implies (27) with y =Xg, as

in (30).

AAFrom (27) and (24a)1 follows an expression for f/g in the form:

* A
A^ l-ky A , (g=o, g>o) , (32)
g

where

as MN , (g=f=0) . (33)

The quantity A (when nonzero) represents the inner product of the normal to the yield

surface 2g in stress space and the normal to the yield surface a in strain space.

For some purposes it is convenient to express the constitutive equation

(5) in terms of an equivalent set of kinematical variables in the form

s = s(eKL-ei,epK) (34)

A ^
Suppose that the partial derivatives asM eKL possess the symmetriest

The function y on the right-hand side of (31) depends on the variables eMN,
e6,K and eMN"

A
tThis is equivalent to the condition that SMN be derivable from a potential, as
indeed is the case in the general thermodynamical theory (see Section 4 of (3])
of which the present development may be regarded as corresponding to the iso-
thermal case. The existence of a potential in the purely mechanical theory
can also be demonstrated by an argment based on the work postulate of (4].
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A A
as M as KL

-eKL eN , then in a manner similar to that in (4, Sec. 5] from (27) we

obtain*

(6 PK6I-aMN N a U Cn)IPL=-Y* ,asgPfPO) * (35)

KL
It is clear frum (35), (30), (lOd) and (12) that if the response function

sMN in (34) is independent of its second and third arguments, i.e., if

as M =0 lm=0, then

KL
PK = Y* -L 1o , ;P y , (g=0) (36)

a L KX sL

and 9KL is directed along the normal to the yield surface 9 in stress space,

as also is eP during loading. It follows from (36) 1 and (28) that in this case
KL

y >0 , (g=0) (37)

and hence, during loading, in view of (30) and (12)2

y > o (38)

also. When pKL satisfies (36)1, (16) can be written aR

1 +y* ( _) = 0 , (g=0) . (39)as L ae P BK KL
K L

The last result can be used to solve for the product Xy and (30) then gives y.

Also, we may set y equal to an arbitrary positive scalar-valued function of the

variables UA and then use (39) to determine X. Thus, in the special case in which

s MN in (34) depends only on its first argument, no constitutive equation is

needed for pKL.

We observe that when pKL satisfies (36)1, then (24b), may be used to

AA
express f/g as

AA A
f/g = xy r , (g=o, g>0) , (40)

*The symmetry of pKL and hence ep  followa from (35). See (4, Sec. 5].

16.
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where

at _ at ._+ .0: (9o) (41)

' KL e0

Also, in view of (32), (40), (37) and (12) 2 "

S<(g=, >o) (42)
XY g

i

i
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3. Strain-Hardening Response. Geometrical Interpretation.
A A

The quotient f/g which occurs in (24b) 2 and related equations in Section 2,

is utilized here to define three distinct types of strain-hardening response for

an elastic-plastic material. These definitions are as follows: An elastic-plastic

material is said to be hardening, softening or exhibiting perfectly plastic

behavior during loading (g = 0, g>0) according to whether~

AA
(a) f/g > 0 (for hardening),

(b A(3
()f/g < 0 (for softening) ,(3

AA
(c) f/g = 0 (for perfectly plastic)

A
We emphasize that a condition of loading, i.e., g =0 and g >0, is always pre-

supposed in the definitions (43). It is worth observing from (24b) 2that once

PKL, CKL, g and (6), are specified, then the strain-hardening response is also known.

We now provide a geometrical interpretation of the definitions (43). We

A
recall that during loading, since g=O0, g >0 and g =0, the strain trajectory Ce

is intersecting the yield surface W and locally pushing it outwards. Since

g =0 and g=O0 it follows from (17) and (19) that f= 0 and f =0 also, and the

corresponding stress trajectory C s is intersecting the yield surface 29 in

stress space. If the material is hardening, (43a) holds and the stress

trajectory C5a is directed outwards and is pushing the surface 24 locally

outwards. But, (43b) holds if the material is softening and the stress

trajectory is directed inwards and is pulling the surface a% locally inwards.

In perfectly plastic behavior when (4+3c) holds, the stress trajectory con-

tinues to lie on the yield surface 03 which is stationary.

Thus while during loading the stress trajectory C e is always pushing the

$ A A
Since g is always positive in (43), we coaild use ot'k.y f in providing the
above definitions. But the use of the quotient f/g, which is rate-
independent, is preferablA in general. For certain purposes, however, it
is useful to employ only f as in (58) 3 and (59) of Section 4.

18.
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yield surface be in strain space locally outwards, the corresponding yield

surface 28 in stress space may be moving concurrently outwards, inwards or may be

stationary depending on the type of strain-hardening response being exhibited. The

actual occurrence of such behavior has been indicated in Section 1 with reference

to the simple tension test. The usual stress, space formulation of plasticity

theory introduces a priori loading criteria in stress space and stipulates that

during loading the yield surface in stress space can never move inwards.

Viewed in the context of the present development, the usual stress space formula-

tion of plasticity is seen to include only a hardening type response and to

exclude softening and perfectly plastic responses .Figure 2 illustrates the

three types of material behavior discussed above.

The definitions for hardening, softening and perfectly plastic behavior intro-

duced in (4~3) require the use of yield surfaces both in strain space and stress

space. However, it may be noted that our terminology for softening and hardening

seems to be consistent with the geometrical sense of these terms employed in a

stress space formulation by Edelmnan and Drucker [8); see Fig. 5 of their paper.

Also, Prager [9] employs the terms hard and soft with reference to material

behavior, but his sense of these terms differs from ours: In [9], a hard

material is one whose stress-strain curve always lies above a given straight

line (representing linear elastic response) with the deviation from linear

behavior increasing for larger deformation; a soft material is one whose stress-

strain curve always lies below the straight line with the deviation increasing

for larger deformation.

V In what follows, we frequently need to refer to a set of conditions which

must be satisfied by various functions and material coefficients, and which

arise from characterization of strain hardening response. To avoid undue

In the context of the present paper, it is not possible to formulate loading
criteria in stress space using only f and

19.



repetition we denote this set of conditions by H and write

> 0 if and only if the material is hardening , (a)

H < 0 if and only if the material is softening , (b) (44)

= 0 if and only if the material is exhibiting

perfectly plastic behavior . (c)

Returning to the definitions (43) and recalling (24b)1 and (12)2, it is seen

that

P1 L e,--+;f CKL] satisfies conditions H (45)

It is worth mentioning that the usual treatment of an elastic-perfectly plastic

material (see, for example, [2, Sec. 9]) in stress space requires the use of a

yield condition of the form f(s KL= const. and the quantity on the left-hand

side of (45) indeed vanishes identically in this case.

With the use of the definitions (43a,b), we now obtain an expression for

the rate of plastic strain which is valid in regions of hardening and softening

behavior only. Thus, by (lad), (12), (24b)1 and (43a), in a region of hardening

ep can be related to f through the expression

A

;P = P f KL 0(46)
KL KLA f___21f'A~K Mfe MN

with (43a) and (45a) holdingt, while in a region of softening e is again

given by (46) but now with (43b) and (45b) holding; in both cases, the sign of

The equation number (45a) refers to (45) along with part (a) of condition H.

20.



TABLE 1

Summary of loading criteria in strain space and

associated conditions in stress space

Elastic g<O0 implies f < 0

A A
Unloading g= 0, g< 0 implies f = 0, f < 0

Neutral A= A

Loading g= 0, g=0 implies f = 0, f = 0

r A
(a) hardening f= 0, f >0

A A

Loading g=0, g>0 (b) softening ipes f=0, f <0

21.



the coefficient of pKL in (46) is positive. For perfectly plastic behavior, it

is clear from (lOd), (24b)i, (43c) and (45c) that e cannot be expressed as a

A
product involving f and must be calculated from (lOd). For convenience, a

summary of the relationships between the loading criteria in strain space and

the associated conditions in stress space is provided in Table 1.

In the remainder of this section, we discuss some special cases of the

foregoing results which are of particular interest in view of their simplicity.

The first two of these (see cases (a) and (b) below) examine the consequences

on strain hardening behavior of certain restrictions on the stress response

A
functions sMN in (5)1 and sMN in (34). The third (see case (c) below) pertains

to a limiting behavior of strain hardening response, i.e., saturation hardening

and softening.

(a) Consider the special case of (5)1 for which the stress response is

independent of its last two arguments, i.e.,

A A

0 o , = 0 (47)
ap B

Then, by (23) we have

_.L,_ L _.& _L

p P U'1

and hence by (24a) or (22)

A A
f/g 1  (48)

Recalling the definitions (43), it is clear that a material for which (47)1,2

hold can never exhibit softening or perfectly plastic behavior. If conditions

(47) are satisfied and if bg/BeM O, it follows from (27) and (30) that

y =0 , y= 0 (49)

Conversely, if (49)1 is satisfied so is (49)2 and then (48) holds by virtue of (32).

22.



(b) Consider the special case of (34) for which the stress response is

independent of its last two arguments. In this case, the results (36) to (42)

hold. It then follows from (37), (40), (43) and (12)2 that

r satisfies conditions H . (50)

With the use of (36) and (40), in a region of hardening or softening (46)

becomes

Laf 1- 0 (51a)
ia1  r's KL

while it follows from (50c), (42), (36)1 and (ld) that in a region of perfectly

plastic behavior
A

;p & a ._f j o (51b)
KL A 2SKL

(c) Caulk and Naghdi [5] have previously introduced a definition of

saturation hardening in connection with their discussion of hardening response

in cyclic loading of metallic materials (see Eq. (19) in [5]). In view of the

definitions (43), it is of interest to reexamine here the notion of saturation

hardening. Thus, for our present purpose, an elastic-plastic material is said

to exhibit saturation hardening along a strain trajectory Ce (or a stress

trajectory Cs ) if and only if there exists a constant Kb such that

A A A
lim f/g =K h > o  (g=0, g>0) . (52s)
t

Similarly a material exhibits saturation softening along a strain trajectory

C if and only if there exists a constant K such thate s
AA A

lrn f/g = K < 0 (g=o, g>0) (52b)
t-

§In the definitions (52a,b) we have excluded for convenience the equality sign.
If the limit of the left-hand sides of (52a,b) is zero, we say that the
material saturates to a perfectly plastic behavior.

23.
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4. Strain Hardening Response for Special Constitutive Equations.

We consider now in some detail the nature of the hardening response in

small deformation of metals whose behavior is characterized by a simple set

of constitutive equations appropriate for elastic-plastic materials which are

homogeneous and initially isotropic in their reference state. First, we

recall that the infinitesimal elastic strain tensor is defined by e e= eL- ep
KL KL KL

and note that with e = 0 in the reference configuration, e = 0 also there.
KL K

It is convenient to utilize a standard decomposition for second order

tensors. Thus, for example, in the case of the stress tensor, we have

- 1
S = 7KL KL +i I 3KK

where s6KL is the spherical part of sKL, 'TKL is the deviatoric (traceless)

part of sKL and s is the mean normal stress. In a similar manner we decompose

e P e into spherical parts e8KL eP8KL,ee KL and deviatoric parts yKL'
KL eKLeII K8, 6,

Yp e
eKL'eKL,

Let the stress response function in (5)1 be specified by generalized

Hooke's law, namely

-KL= 2pY L , s = 3k 'e  , (53)

and the coefficient function for the rate of work-hardening response in

(9) in the form (10]

CKL = OT KL +OS61M (54)

where i is the shear modulus, k the bulk modulus and and 0 are constants.

With the use of the decompositions just noted, the loading functions f(1j) and

g(U) can be written as different functions f(TMNS ,e ,K) and g(yMN,e ,).

In this section, we restrict attention to special loading functions of the form
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f V Y( MN';-'ypN,ep,K) T Kg KL+ 3 *8 KI
(55)

g(t4) _9Y'eVMNpK = 4p -K) (-yK-yPKj)+ 2*k2 Kee .,

where # is a constant and where (17) and (53) have been used§ . Utilizing

formulas of the typet

_ _ _ L i ll _ l f - _ f (56 )

and recalling (20) and (11), it can be easily shown that

21f A
-- 2(T+, f = 2(M; M+3*;s) ,

A * ~A
g= 2(2pi. Y + 94ks e) f f+2 (2pT P +~ +9*ks ep)

and the expressions for ag/aeM and af/aep  may be obtained similarly. We

A
recall that during loading g is positive while g= f =g =f= 0. Keeping this

in mind, it follows from (55)1 and (57) that during loading

-2 - A
TKT+ 3 *s -K=0 , 2(Trj; +3*ss)- =0 , f (58)

and hence by the definitions (43),

and (TMN;MN + 3* ss) both satisfy conditions H (59)

Clearly for the special constitutive equations used in this section, in view of

(58)3 and (59), the strain hardening behavior way be characterized by k. Further-

more, from (58)3 and (lOb,c) during neutral loading it is necessary that (=0 and

during unloading it is necessary that K<0. In this connection, recall Table 1

and the discussion following (21).

§The loading function (55)1 does not depend explicitly on plastic strain, but
includes a dependency on mean normal stress. When * =0 and K =const., (55)l
reduces to the usual von Mises yield function. A loading function of the type
(55)1 was previously employed by Green and Naghdi [O].

tIt is understood that in line with the summation convention, our notation
ar/. KK in (56) stands for the sum a/Bi1 + af/ar + a/a33"
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The stress response (53) may be regarded as a special case of that in

(34) with the last two arguments absent; and, in addition, the symmetry con-

ditions mentioned following (34) are satisfied by (53). Hence, in addition to

(36) to (42) the special results obtained at the end of Section 3 [see case (b)

following Eq. (49)] remain valid here. Thus, using (54) and (55), from (33),

(41) and formulas of the type (56) and (57)1, we obtain

A = 4 (2PTKL KL+9 *2ks) , r = 2( KL TKL+3*0s) . (60)

AA
With the use of (60), xy and f/g may be obtained at once from (42). Also,

remembering (50), we observe that in this case the right-hand side of (60)2

provides a rate-independent characterization of strain hardening. Constitu-

tive equations for the rate of plastic strain or equivalently for e and

yp simplify and may now be obtained from (51a) in a region of hardening

or softening and from (51b) in a region of perfectly plastic behavior.

Since our development in Sections 2 and 3 began with the strain space

AA
(rather than the stress space) formulation as primary and since the quotient f/g

is used to define strain hardening, it is desirable to examine the predictions

of various theoretical results in the case of the familiar one-dimensional

tension test. To this end, consider a homogeneous deformation sustained

A
by a uniaxial tension sl = s =s(t) along the X 1-axis. Then, using a matrix

representation for TKL, we have

2 0 0

IITKjlgIJ lbLII , s- o30 , I0I = 0 -1 0 (61)
3 -i

0 0 -1

where for brevity we have introduced the constant matrix lbKl. Assuming

that initial yield occurs at a value s of s and a value KO >0 of K, the0 o

solution can be obtained in a straightforward manner. We omit details, but

26.
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record here some of the results of interest

1 2 1 2=K s ( 2 +* )  , Ko =  s o ( 2 + )  2+*>0 , 80> , (62a)

;s > 0 when g = , >0 (62b)

Both S and (20+*0) satisfy condition H . (62c)

We postpone a discussion of perfectly plastic behavior until later in this

section but consider further calculations for the other two types of behavior:

In a region of hardening or softening, the elastic and plastic strains are

e k 1Y = - Ilb~jI , (63a)

-S S -S

e 0- 0

9k (63b)

s-s
*lp1 0 -V 0L E *

0 -

dep dy, f> 0 if and only if the material is hardening ,
an d -'1(63c)

< 0 if and only if the material is softening,

where the constants v ,E ,p and k are defined by

SE* 3(2+)
2+4 2(2+4)2

* E 2 E (63d)
P 2(1+v*)

E*
E = E (4 0)

3(1-2v*) 9*

and

It is clear from (58)3, (10), (62a)1 3 and (62b)1 that during neutral loading,
it is necessary that s= 0 and dur Az unloading it is necessary that s <0.

27.
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E and p* satisfy conditions H • (63e)

The constants in (63d) have been defined analogously to the corresponding

constants in linear elasticity, e.g., 1 =2 E ' k= 3 E , where v is

Poisson's ratio. In the special case that * =0, v =j and the expressions

for E ,1 simplify while k -. as *-0. Continuing our discussion of hazdening

and softening behavior, it can be shown that when 4 #0 (see Appendix A for

AA
details) the quotient f/g can be written as

A
f 2 (64)

9dy- -e

1 tr (2II K'L K 11-1r+, de (del)-1118 I3 11-d4 11 dse -1 d L

where tr stands for the trace operator. In the special case when v =v,

(64) reduces to (see Appendix A for details)

deL_i [1 + dem-(65a)X= [E-d]
ds de(6ag e

and by (43a,b)

de de > 0 if and only if the material is hardening ,
and (1 + e) (65b)

e < 0 if and only if the material is softening ,

ewhere as in Section 1, we have again used the notation e = ell' 'e = ell ,

ep = eP .

P 11'
Before closing this section, it is desirable to elaborate briefly on

some features of the foregoing results for uniaxial tension, which have been

obtained with the use of a special set of constitutive equations. With

reference to all three types of strain hardening response defined in (43),

it is clear that during loading ePl is strictly increasing with time by

virtue of (62b). Moreover, according to (62c) the time rate of stress
3*

may be used to characterize strain hardening behavior in uniaxial tension

and a characterization of the same behavior is provided by the combination

28.
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(20+*0) of the constitutive coefficients. While the elastic moduli E,p are

always positive, it follows from (63e) that the constants E ,M are positive

in a region of hardening and negative in a region of softening. In hle special

*~ A
case of v =v, it is clear from (65a) that the quotient f/g can be expressed in

terms of quantities (2) to (4) and indeed (65b) corresponds to the behavior

sunmrized in (4) for uniaxial tension §. Furthermore, with *= 0 in (55)1, the

plastic volume change or equivalently e vanishes also. The strain-hardening

response is then characterized by 0, in view of (62c). Also, in a region of

AA
hardening or softening the quotient f/g reduces to (see Appendix A for details)

A
f r x ,(6
= 3 dsJ (66)

g

e e
where we have put y = yII and y = YII.

The significance of the strain space formulation in the case of elastic-

AA
perfectly plastic materials was pointed out in [1]. Since the quotient f/g

is used here to define various types of hardening response, it is desirable to

indicate the reduction of the present development to the usual perfectly plastic

A
behavior in uniaxial tension. First, we observe that during loading (g= O, g> O)

AA
for perfectly plastic behavior f/g= r= O by (43c) and (42). It then follows that

=0, K= K s= so by (58)3 and (62a),2 and that eP although indeterminate },

is strictly increasing with time in view of (62b) . Thus, in the context of the

present paper, the uniaxial stress-strain curve for elastic-perfectly plastic

behavior consists of a linearly elastic portion followed by a horizontal portion

and as time progresses the locus of eP1 moves outward along the abscissa of the

§Recall that the special constitutive equations employed in this section are
not sufficiently general to predict all details of the stress-strain curve
in Fig. 1. Indeed, different choices of the combination (20+#0) of the
coefficients (appropriate for different materials) yield stress-strain
curves consisting of straight line segments whose slopes correspond to the
rising or falling portions of the curve in Fig. 1.

p}The indeterminacy of ell stems from the fact that (51b) in this case reduces
to an identity.
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s-e curve. This is in agreement with the usual characterization of

perfectly plastic behavior in uniaxial tension. We also note that

an examination of the solution given by (63a,b) and (63e)

easily reveals that hardening (softening) is represented in a stress-strain

diagram by a straight line which lies above (beloti) the horizontal perfectly

plastic line. Indeed, since ell-- s/E+(s-s0 )/E*
, then dell / = 1/E +/E*

and by standard results for inequalities it follows from (63e) that

del1> -1- > max(!, -)] if the material is hardening
E

1 dell 1>- ---> -- > -w if the material is softening
E

Moreover,

dell 1d - >1 implies that the material is hardening ,

de 1 1< implies that the material is softening

ds E
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5. Saturation hardeninj

As in Section 4 we again restrict attention to small deformations of

elastic-plastic materials, which are homogeneous and initially isotropic in

their reference configuration. We also assume that there is no plastic

volume change so that eP =O in the notation of Section 4. For a fairly large

class of metallic materials, it is well known that the stress-strain curves

of uniaxial cyclic loading attain --after several cycles --

saturation hardening. The purpose of this section is to indicate how the

development of Sections 2 and 3 can be used to characterize a hardening

response that includes saturation behavior and to compare the results with

those of Caulk and Naghdi [5].

Starting with a fairly general discussion of loading functions contained

in the paper of Green and Naghdi [2], for initially isotropic materials Caulk

and Naghdi [5] derived a loading function in the form (see [5, Eqs. (40)1 and

(56)1])

f 0j) = '( TMNJY K) = TK~K T IT + ay y - K (67)

g(ti) = _9(YM.%Y&Mj,K) = 1412(K-KL(KLy,-2-~K-F )y yP O'LYPKL K.KL1L

where o and a are constants and where (53) has been used in writing (67)2. It

should be noted that the loading functions (67)1,2 depend explicitly on YPL but

not on the mean normal stress s. Here we also adopt (67)1,2 but, instead of the

hardening response assumed in [5), we specify the coefficient function C. in (9) by

A A
K= (KTK T+ (K) YK (68)

which is different from that used in Section 4. The constitutive

assumption for C. in [5] is similar to (68) but with O(K) and J(K) specified

by
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A IC-K A K-IC
(K) = KKa'81(69)

where 0 and 1 are constants, K°0 is the value of K at initial yield and

Ks is the saturation value of K. Since the stress response (53) is used in

this section, in addition to (36) to (42), all the results stated under

case (b) at the end of Section 3 are also valid here.

To facilitate the discussion that follows and for later reference, we

record the expressions

af = 2T - 31 o - = 2p -a- j 0 , (g 0)
sMN MNMN ' eMN sMN

A

= (2TN-ayN )T (70)
MN MN

g = 2;P2r ap )Y* = f+2pTMN- rM>)
MN MN f+2(2 -k

which have been obtained with the use of formulas of the type (56) along with

(20), (11), (36)1 and (37). With the help of (70) and recalling the definitions

(33) and (41), A and r are given by

A = 21j -a- '_af = 2p(2T . )(2T )_ _
a K L (2 K L L K L K LS K7

A A

Thus, based on the constitutive equations assumed in this section,

A is 2p times the square of the magnitude of the normal to the yield

surface ag in stress space. Having obtained the results (71)1,2 ' XY can be
^AA

calculated from (42)1 and it then follows from (32) that the quotient f/g must

satisfy the inequality

AA
f/g <l , (72)

which limits the extent of the hardening behavior. The restriction (72), in
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turn, places an upper bound of unity on the value of the saturation constant

Kh in (52a) so that

0 e K h S 1. (73)

Expressions for yKL can now be easily calculated from (51a) in a region ofKL

hardening or softening and from (51b) in a region of perfectly plastic

behavior.

Given the constitutive assumptions employed in this section, the results

(71)1,2 and the restrictions (72), (73) are valid for any small elastic-

plastic deformations. In the rest of this section, however, we again confine

attention to a homogeneous deformation sustained by uniaxial tension (61).
-e =-

Since plastic volume change eP= 0, e =e is given by (63a)1 . Again, as in
ep

(1)1, for convenience we use the notation e= el e =ee , ep= e and

write

1 PKij ep bl

where the constant matrix IbKLIJ is defined by (61)3. Also, from (70)1,3,4'

(61) and (1)2, we deduce that

A 4A 4
f 4s-oe )S , g -( s-ge )(E+(311-E); , s- ep 0 (g=0) (74)

At initial yield es =0 and K = 2 >0 by virtue of (74)3 and (67)1

Hence, on the yield surface (g = 0), s - cep must be positive. From this

last result, along with (30) and (36)2, we have ep >0 during loading and

therefore ep is strictly increasing with time. Further, from the definition

(43), and the positivity of the coefficient of s in (74)1, it follows that s

must satisfy the conditions in (44). The above results may be sumnarized as follows

* The inequality (75) , together with (74) and (10), imply the following:
During neutral loading it is necessary that i = 0, while during unloading it
is necessary that < 0.
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4s-we 0 , > 0
(75)

s satisfies conditions H

While (75)2 holds during all three types of strain-hardening behavior defined

in (43), it follows at once from (75)3 and (1)2 that ee also satisfies con-

ditions H.

For uniaxial tension under discussion, the quantities A and r in (71)1,2

reduce to

A=3P( s-aep)2 >0 ' 23 s-p
(76)2 A A

a (1+A(K))s - (2a-rA(K))e 
p

3 01 p

where for later convenience we have introduced the quantity F defined by (76)3 .

Further, from (50), (76)2 and (75)1 follows the result

F satisfies conditions H . (77)

Also, the expression for plastic strain rate ep in a region of hardening or

softening can be written as
214) 21E(4s e)

= f s-cre s - a e , (78)

3

which is similar in form to that obtained in [5] and where the relation

s= E(e-e p) has been used in deriving (78)2. In fact, if the coefficient

A A
functions p and I which occur in r are specialized to those given by (69), then

(78) reduces to that in [5, Eq. (80)].

The result (75)3 enables us to calculate the slopes de/ds, de p/ds

explicitly as functions of s,e ,K. Thus, with the use of (1), (78)1 and chain

rule of differentiation, in a region of hardening or softening we have
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de de 2 4 aede 1+...33 
(79)

U E ds ' ds

It follows from (79), (75) 1 and (77) that

de dede 
>0. .

d> > s > max(!, ) > if the material is hardening

de de (80a)
< < 0 > _ if the material is softeningds 'E ds ds

Moreover,
1 de

de > -(or equivalently c> > 0) implies hardening

de <1 (or equivalently -m < d < 0) implies softening (80b)

ds E ds

Since de /ds=- which is always positive, we may write de p/de E de /ds,e Ep e p

de/dee= E de/ds and then obtain explicit expressions for these derivatives

from (79). It is evident that conditions of the type indicated in (80) for

de p/ds also hold for dep/dee. It follows from (42), (76) and (79) 2 that in a

region of hardening or softening

A de -_ dy-1 1>- L = [ l+ -'Ps = [1 + 1 (d _) -l -
ds + 3o ds lrlfl (81)

g

In view of (80a) and (43), (81) implies that de /ds <- i/3v in a region of
p

softening. It is clear from (81)1 and (1) that a knowledge of p ,E and the
A A

slope de/ds suffices to determine f/g. If the material saturates to perfectly

plastic behavior, the left-hand side of (81)1, i.e., f/ must tend to zero and

hence in this case de /ds must become unbounded.

We now turn to a brief discussion of saturation hardening usually

observed under uniaxial cyclic loading. Recalling the definitions (52a,b),

from (81) we deduce that saturation hardening occurs if there exists a constant

SIh such that
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de

11 +3AlmK lmL jl-K. O (82)ds h t ds E "

In order to exploit the implications of (82), we first observe that r defined

by (76)3 can be rewritten as

' A A A()+ As (s- ote )(1+13(K))+ 2a + JK ( e(3

and then express (79)2 in the form

d 2 A

-- = [ 1 +( 2 ) + (8)

Consider now a special material response which corresponds to the vanishing of

the numerator of the second term in the square brackets in (84), i.e.,

2 A +
-- 2a + +n(K) (K) = 0 (85)

which has the same form as a particular case discussed in [5]. From (75)l,

(77) 1 9 (83) to (85) and (F.i), it can be readily concluded that

A
a+P(K) satisfies conditions H

le A (86)

ds () g.

Also, in view of (,.3b) and (86)2, in a region of softening:

2) 
A0 > a+ P(K) >-41k

If saturation hardening occurs with 0<1(K<1, then from (82)1, (86) and the

condition (85) we have

A A 2a +
lir A(K) = - , lr T(K) = +2o , (O<Kh<) , (87)
t.. t-.0
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A
while O(K) becomes unbounded for Kh= 1.

We further examine saturation hardening by adopting the special coefficients

(69) subject to the condition (85). When saturation is assumed to occur, the

limit of the coefficients (69) as t- is zero and from (85), (82) and (86)

we obtain

2 del 14 <4g=[1 >
a 4a , c4+23 =O , limI-=f+ , 0c , >88)

the first three of which are the same as those derived in [5, Eqs. (70) and

(86)].

By way of illustration, consider the 304 stainless steel whose behavior

in cyclic tension-compression is discussed in [5, Sec. 7]. As in [5], for the

304 stainless steel, we take the values of E=123 GPa and de/ds= (3.85 GPa) "l

at initial yield and also assume the value v = 0.3 for Poisson's ratio . With

AA
these values, the expressions (79)1 and (81) predict that the quotient f/g at

initial yield is approximately equal to 0.027. Again using the above values,

as well as a =1.5 (for tension), (88)3 gives an approximate value of 0.008 for

K . Thus, f^/ decreases from a value of 0.027 at initial yield to a value of

h

0.008 at saturation. It is clear from (82) that the definition of saturation

hardening given by (52a) implies that the slopes de/ds or Cle /ds tend to

p

constant limits at saturation. In this connection, it should be noted that

A A
when 0 and I are of the form (69), the definition of saturation hardening used

in [5] also gives constant limiting slopes.

We return once more to the perfectly plastic case, and first observe that

the expression for* tKL can be obtained from (51b) with the use of (70)1,4 and

(71)1. In view of (75)3, s=0 for perfectly plastic behavior and s retains its

|A value for Poisson's ratio was not needed in the calculation given in [5,
See. 7]. With v = 0.3 and E= 123 GPN, L is calculated to be 47.31 GP&.

|In fact, in the case of uniaxial tension, the resulting expression is an

identity.
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initial yield value s0 and, in accordance with (75)2 , ep is strictly increasing

with time during loading. The work-hardening parameter K may then be obtained

as a function of ep from g=f=O with f given by (67)1

22s -ase + Iae (89)
3 o op 2 p

By (76) and (77c), for perfectly plastic behavior it is necessary that

2. (a+ A(K))s- (2a-A(K))e = 0 (90)

for all ep. We observe, however, that in view of (76) and (77c) the constant

7alues

A A
()= , (() = 2a (91)

are sufficient for perfectly plastic behavior. It should be noted that the

values (91) satisfy the condition (85).
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Appendix A

We provide here details of the calculations leading to (64), (65a) and (66),

AA
and also record alternative useful forms of the quotient f g associated with the

constitutive equations of Section 4. From (63), in a region of hardening or

softening we have

de 42e -1 d ! A! d -1 _L
ds ds ds - s + (so) , (Al)

k

jj 'fKL jj!YL -1 KlPL cL -11.i6K1
dN L dN1  l ~ l (1 + - )l l (A2)

-s-ll l--i- = 116KLII + ids -N-1 =

0 0 0*/dK dee dep de e1 0 0

deJi 1 1 KI + 11-Ts - U~ = 6dl E
(is ' 1 ll5dll E

In a region of hardening or softening r# 0 by (50) and using (42)2 we mayAA A-

write f/g=( ) . Then, by (60) and (61) we have:

A l+ (4L+-3* k) 1l

- E l+v 1 -2v

E -(7;73.)2 V )]]- (A4)
E

AA

and we may recall that l+v>0, l-2v>0. If j#0, then f/g may also be

written as

A2
[ 4 +3* k -1 2+*

A * +* - (A5)^ = p*+3* k*  2(1 + .)+ *(1 +
k

The result (64) follows at once from (Al), (A2) and (A5). Similarly, if

*V (or f-2v), then from (A3) and (A4) we obtain
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Adep de e
+ [ E -1 [1ttl Ij + 11-III 11 1 ~ 1  1 A6

A = 3 11 ds ds M

The result (65a) follows from (A6), (63a) and (64+). With the use of (A3D it is
de dee

also possible to write (A6) in terms of I KI 1 KI1 but we do not record

this here.

In the special case that *= 0, we note that by (63d) 2 ,3 and (A2),

l-4=ir I M~i d 1  dY (de -1 (A7)
0 3 ds dsI dS d

The relations (A4+)1, (A7), (63a)2 and (63b )2 lead to the expression (66).

t
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Captions for Figures

Fig. 1. Idealized stress-strain diagram for a typical ductile metal. As the

points 1,2,3,4,5 of the stress-strain curve are successively traversed,

the locus of the yield point on the e-axis moves outwards through

Bl,B2 ,B 3 ,B 4 and B5, respectively, while the corresponding locus of the

yield point on the s-axis first moves upwards through A1 ,A2 to A3, and

it then moves downwards through A4 and A5 . All unloading curves are

drawn parallel to the linear elastic segnent 1-0 and hysteresis is

ignored.

Fig. 2. A sketch indicating the motion of yield surfaces in stress space and

strain space. During loading the yield surface a in strain space moves

outwards with the strain trajectory Ce through positions such as B1 , B2 ,

B3 ,B4,B5 . The corresponding yield surface bg in stress space moves out-

wards through positions such as A1 and A2 during hardening behavior, is

stationary in positions of the type A3 during perfectly plastic behavior,

and moves inwards through positions such as A4 and A 5 during softening

behavior.
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